

ADVANCED GCE

Further Pure Mathematics 2

Candidates answer on the answer booklet.

## OCR supplied materials:

- 8 page answer booklet
- (sent with general stationery)
- List of Formulae (MF1)

## Other materials required:

• Scientific or graphical calculator

Monday 10 January 2011 Morning

Duration: 1 hour 30 minutes

4726



## **INSTRUCTIONS TO CANDIDATES**

- Write your name, centre number and candidate number in the spaces provided on the answer booklet. Please write clearly and in capital letters.
- Use black ink. Pencil may be used for graphs and diagrams only.
- Read each question carefully. Make sure you know what you have to do before starting your answer.
- Answer **all** the questions.
- Do **not** write in the bar codes.
- Give non-exact numerical answers correct to 3 significant figures unless a different degree of accuracy is specified in the question or is clearly appropriate.
- You are permitted to use a scientific or graphical calculator in this paper.

## **INFORMATION FOR CANDIDATES**

- The number of marks is given in brackets [] at the end of each question or part question.
- You are reminded of the need for clear presentation in your answers.
- The total number of marks for this paper is **72**.
- This document consists of 4 pages. Any blank pages are indicated.

1 Use the substitution 
$$t = \tan \frac{1}{2}x$$
 to find  $\int \frac{1}{1 + \sin x + \cos x} dx$ . [5]

2

**2** It is given that  $f(x) = \tanh^{-1} x$ .

(i) Show that 
$$f'''(x) = \frac{2(1+3x^2)}{(1-x^2)^3}$$
. [5]

(ii) Hence find the Maclaurin series for f(x), up to and including the term in  $x^3$ . [3]

3 The function f is defined by 
$$f(x) = \frac{5ax}{x^2 + a^2}$$
, for  $x \in \mathbb{R}$  and  $a > 0$ .

(i) For the curve with equation y = f(x),

| <b>(a)</b> | write down the equation of the asymptote, | [1] |
|------------|-------------------------------------------|-----|
|------------|-------------------------------------------|-----|

- (b) find the range of values that y can take. [4]
- (ii) For the curve with equation  $y^2 = f(x)$ , write down
  - (a) the equation of the line of symmetry, [1]
  - (b) the maximum and minimum values of y, [2]
  - (c) the set of values of x for which the curve is defined. [1]
- 4 (i) Use the definitions of hyperbolic functions in terms of exponentials to prove that

$$8\sinh^4 x \equiv \cosh 4x - 4\cosh 2x + 3.$$
 [4]

(ii) Solve the equation

 $\cosh 4x - 3\cosh 2x + 1 = 0,$ 

giving your answer(s) in logarithmic form. [5]

5 The equation

$$x^3 - 5x + 3 = 0 \tag{A}$$

may be solved by the Newton-Raphson method. Successive approximations to a root are denoted by  $x_1, x_2, \ldots, x_n, \ldots$ 

(i) Show that the Newton-Raphson formula can be written in the form  $x_{n+1} = F(x_n)$ , where

$$\mathbf{F}(x) = \frac{2x^3 - 3}{3x^2 - 5}.$$
 [3]

- (ii) Find F'(x) and hence verify that  $F'(\alpha) = 0$ , where  $\alpha$  is any one of the roots of equation (A). [3]
- (iii) Use the Newton-Raphson method to find the root of equation (A) which is close to 2. Write down sufficient approximations to find the root correct to 4 decimal places. [3]



The diagram shows the curve y = f(x), defined by

$$f(x) = \begin{cases} x^x & \text{for } 0 < x \le 1, \\ 1 & \text{for } x = 0. \end{cases}$$

(i) By first taking logarithms, show that the curve has a stationary point at  $x = e^{-1}$ . [3]

The area under the curve from x = 0.5 to x = 1 is denoted by A.

- (ii) By considering the set of three rectangles shown in the diagram, show that a lower bound for A is 0.388.
- (iii) By considering another set of three rectangles, find an upper bound for *A*, giving 3 decimal places in your answer. [2]

The area under the curve from x = 0 to x = 0.5 is denoted by *B*.

- (iv) Draw a diagram to show rectangles which could be used to find lower and upper bounds for *B*, using not more than three rectangles for each bound. (You are not required to find the bounds.)[3]
- 7 A curve has polar equation  $r = 1 + \cos 3\theta$ , for  $-\pi < \theta \le \pi$ .
  - (i) Show that the line  $\theta = 0$  is a line of symmetry. [2]
  - (ii) Find the equations of the tangents at the pole.
  - (iii) Find the exact value of the area of the region enclosed by the curve between  $\theta = -\frac{1}{3}\pi$  and  $\theta = \frac{1}{3}\pi$ .
  - (i) Without using a calculator, show that  $\sinh(\cosh^{-1} 2) = \sqrt{3}$ . [2]
    - (ii) It is given that, for non-negative integers *n*,

$$I_n = \int_0^\beta \cosh^n x \, \mathrm{d}x, \quad \text{where } \beta = \cosh^{-1} 2.$$

Show that 
$$nI_n = 2^{n-1}\sqrt{3} + (n-1)I_{n-2}$$
, for  $n \ge 2$ . [6]

(iii) Evaluate  $I_5$ , giving your answer in the form  $k\sqrt{3}$ . [4]

8

6

L--1

[5]

[3]

| 1        | $t = \tan \frac{1}{2}x \Longrightarrow dt = \frac{1}{2}\sec^2 \frac{1}{2}x  dx = \frac{1}{2}(1+t^2)  dx$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | B1                  | For correct result AEF (may be implied)                                                     |
|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|---------------------------------------------------------------------------------------------|
|          | $\int \frac{1}{1-t} dx = \int \frac{1}{1-t} \frac{2}{2} dt$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | M1                  | For substituting throughout for <i>x</i>                                                    |
|          | $J_{1+\sin x + \cos x} = J_{1+\frac{2t}{1+t^{2}} + \frac{1-t^{2}}{1+t^{2}}} + \frac{1-t^{2}}{1+t^{2}} = \frac$ | A1                  | For correct unsimplified <i>t</i> integral                                                  |
|          | $= \int \frac{1}{1+t}  \mathrm{d}t = \ln \left  1+t \right  (+c)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | M1                  | For integrating (even incorrectly) to $a \ln  f(t) $ . Allow     or ()                      |
|          | $= \ln k \left  1 + \tan \frac{1}{2} x \right  (+c)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | A1 5                | For correct $x$ expression $k$ may be numerical, $c$ is not required                        |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5                   |                                                                                             |
| 2 (i)    | $f(x) = \tanh^{-1} x, f'(x) = \frac{1}{1 - x^2}, f''(x) = \frac{2x}{(1 - x^2)^2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | M1                  | For quoting $f'(x) = \frac{1}{1 \pm x^2}$ and attempting to                                 |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | A 1                 | differentiate $f'(x)$<br>For $f''(x)$ correct www                                           |
|          | f'''(x) =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | AI                  |                                                                                             |
|          | $\frac{2(1-x^2)^2 - 2x \cdot 2(1-x^2) \cdot -2x}{(1-x^2)^4} OR \frac{2x \cdot 4x}{(1-x^2)^3} + \frac{2}{(1-x^2)^4}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\frac{M1}{)^2}$ A1 | For using quotient <i>OR</i> product rule on $f''(x)$<br>For correct unsimplified $f'''(x)$ |
|          | $=\frac{2(1-x^2)^2+8x^2(1-x^2)}{(1-x^2)^4} OR \frac{8x^2}{(1-x^2)^3}+\frac{2(1-x^2)}{(1-x^2)^3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ,                   |                                                                                             |
|          | $=\frac{2(1+3x^2)}{(1-x^2)^3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | A1 5                | For simplified $f''(x)$ www AG                                                              |
| (ii)     | f(0) = 0, f'(0) = 1, f''(0) = 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | B1√                 | For all values correct (may be implied)<br>ft from (i)                                      |
|          | $f'''(0) = 2 \rightarrow \tanh^{-1} x = x + \frac{1}{2} x^3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | M1                  | For evaluating $f'''(0)$ and using Maclaurin                                                |
|          | $1 (0) - 2 \rightarrow \tanh^2 x - x + \frac{1}{3}x$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | A1 3                | expansion<br>For correct series                                                             |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 8                   |                                                                                             |
| 3 (i)(a) | Asymptote $y = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | B1 1                | For correct equation (allow <i>x</i> -axis)                                                 |
| (b)      | METHOD 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | M1                  | For expressing as a quadratic in r                                                          |
|          | $y = \frac{3ax}{x^2 + a^2} \Rightarrow yx^2 - 5ax + a^2y = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | M1                  | For using $b^2 - 4ac \leq 0$                                                                |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | A 1                 | For $25a^2 - 4a^2y^2$ seen or implied                                                       |
|          | $b^2 \ge 4ac \Rightarrow 25a^2 \ge 4a^2y^2 \Rightarrow -\frac{5}{2} \le y \le \frac{5}{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | A1 4                | For correct range $\int dx  dx  dx$                                                         |
|          | METHOD 2 $(2 - 2)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                     |                                                                                             |
|          | $y = \frac{5ax}{x^2 + a^2} \Rightarrow \frac{dy}{dx} = \frac{-5a(x^2 - a^2)}{(x^2 + a^2)^2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | M1*                 | For differentiating <i>y</i> by quotient <i>OR</i> product rule                             |
|          | $dy = 0 \rightarrow x = \pm z \rightarrow x = \pm 5$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | A1                  | For correct values of <i>x</i>                                                              |
|          | $\frac{1}{\mathrm{d}x} = 0 \implies x = \pm a \implies y = \pm \frac{1}{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | M1                  | For finding y values and giving argument for range                                          |
|          | Asymptote, sketch etc $\Rightarrow -\frac{5}{2} \le y \le \frac{5}{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Al<br>(*dan)        | For correct range                                                                           |
| (ii)(a)  | <i>y</i> = 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | B1 1                | For correct equation (allow <i>x</i> -axis)                                                 |
| (b)      | Maximum $\sqrt{\frac{5}{2}}$ , minimum $-\sqrt{\frac{5}{2}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | B1√                 | For correct maximum f.t. from (i)(b)                                                        |
|          | N 2 - N 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | BIV 2               | For correct minimum f.t. from (i)(b)<br>Allow decimals                                      |
| (c)      | $x \ge 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | B1 1<br>9           | For correct set of values (allow in words)                                                  |

| 4 (i) | $8\sinh^4 x = \frac{8}{16} \left( e^x - e^{-x} \right)^4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | B1                  | $\sinh x = \frac{1}{2} \left( e^x - e^{-x} \right)$ seen or implied                                                         |
|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|-----------------------------------------------------------------------------------------------------------------------------|
|       | $\equiv \frac{8}{6} \left( e^{4x} - 4e^{2x} + 6 - 4e^{-2x} + e^{-4x} \right)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | M1                  | For attempt to expand $\left(\ldots\right)^4$                                                                               |
|       | 16 (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                     | by binomial theorem OR otherwise                                                                                            |
|       | $\equiv \frac{1}{2} \left( e^{4x} + e^{-4x} \right) - \frac{4}{2} \left( e^{2x} + e^{-2x} \right) + \frac{6}{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | M1                  | For grouping terms for $\cosh 4x$ or $\cosh 2x$                                                                             |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     | $OR$ using $e^{4x}$ or $e^{2x}$ expressions from RHS                                                                        |
|       | $\equiv \cosh 4x - 4 \cosh 2x + 3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Al                  | 4 For correct expression AG                                                                                                 |
|       | <b>SR</b> may be done wholly from RHS to LHS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | MI M                | Evidence of factorising required for 2nd M1                                                                                 |
| (ii)  | METHOD 1 $\cosh 4x - 3\cosh 2x + 1 = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | DIA                 |                                                                                                                             |
|       | $\Rightarrow (8\sinh^4 x + 4\cosh 2x - 3) - 3\cosh 2x + 1 = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | M1                  | For using (i) and $\cosh 2x = \pm 1 \pm 2 \sinh^2 x$                                                                        |
|       | $\Rightarrow 8 \sinh^4 x + 2 \sinh^2 x - 1 = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | A1                  | For correct equation                                                                                                        |
|       | $\Rightarrow (4 \sinh^2 r - 1)(2 \sinh^2 r + 1) = 0 \Rightarrow \sinh r = \pm \frac{1}{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | M1                  | For solving their quartic for sinh x                                                                                        |
|       | $\Rightarrow (451111 \times 1)(251111 \times 1) = 0 \Rightarrow 51111 \times 1 = 2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | A1                  | For correct sinh x (ignore other roots)                                                                                     |
|       | $\Rightarrow x = \ln\left(\pm\frac{1}{2} + \frac{1}{2}\sqrt{5}\right) = \pm\ln\left(\frac{1}{2} + \frac{1}{2}\sqrt{5}\right)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | A1√                 | 5 For correct answers (and no more)                                                                                         |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     | f.t. from their value(s) for $\sinh x$                                                                                      |
|       | <b>SR</b> Similar scheme for $8\cosh^4 x - 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4 cosh <sup>2</sup> | $x + 5 = 0 \Rightarrow \cosh x = \frac{1}{2}\sqrt{5} \Rightarrow x = \pm \ln\left(\frac{1}{2} + \frac{1}{2}\sqrt{5}\right)$ |
|       | METHOD 2 $\cosh 4x - 3\cosh 2x + 1 = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                     |                                                                                                                             |
|       | $\Rightarrow (2\cosh^2 2x - 1) - 3\cosh 2x + 1 = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | M1                  | For using $\cosh 4x = \pm 2 \cosh^2 2x \pm 1$                                                                               |
|       | $\Rightarrow 2\cosh^2 2x - 3\cosh 2x = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | A1                  | For correct equation                                                                                                        |
|       | $\Rightarrow \cosh 2x = \frac{3}{2} \Rightarrow x = \frac{1}{2} \ln \left(\frac{3}{2} + \frac{1}{2}\sqrt{5}\right)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | M1                  | For solving for $\cosh 2x$                                                                                                  |
|       | $2^{-1} = 2^{-1} = 2^{-1} = 2^{-1} = 2^{-1} = 2^{-1} = 2^{-1} = 2^{-1} = 2^{-1} = 2^{-1} = 2^{-1} = 2^{-1} = 2^{-1} = 2^{-1} = 2^{-1} = 2^{-1} = 2^{-1} = 2^{-1} = 2^{-1} = 2^{-1} = 2^{-1} = 2^{-1} = 2^{-1} = 2^{-1} = 2^{-1} = 2^{-1} = 2^{-1} = 2^{-1} = 2^{-1} = 2^{-1} = 2^{-1} = 2^{-1} = 2^{-1} = 2^{-1} = 2^{-1} = 2^{-1} = 2^{-1} = 2^{-1} = 2^{-1} = 2^{-1} = 2^{-1} = 2^{-1} = 2^{-1} = 2^{-1} = 2^{-1} = 2^{-1} = 2^{-1} = 2^{-1} = 2^{-1} = 2^{-1} = 2^{-1} = 2^{-1} = 2^{-1} = 2^{-1} = 2^{-1} = 2^{-1} = 2^{-1} = 2^{-1} = 2^{-1} = 2^{-1} = 2^{-1} = 2^{-1} = 2^{-1} = 2^{-1} = 2^{-1} = 2^{-1} = 2^{-1} = 2^{-1} = 2^{-1} = 2^{-1} = 2^{-1} = 2^{-1} = 2^{-1} = 2^{-1} = 2^{-1} = 2^{-1} = 2^{-1} = 2^{-1} = 2^{-1} = 2^{-1} = 2^{-1} = 2^{-1} = 2^{-1} = 2^{-1} = 2^{-1} = 2^{-1} = 2^{-1} = 2^{-1} = 2^{-1} = 2^{-1} = 2^{-1} = 2^{-1} = 2^{-1} = 2^{-1} = 2^{-1} = 2^{-1} = 2^{-1} = 2^{-1} = 2^{-1} = 2^{-1} = 2^{-1} = 2^{-1} = 2^{-1} = 2^{-1} = 2^{-1} = 2^{-1} = 2^{-1} = 2^{-1} = 2^{-1} = 2^{-1} = 2^{-1} = 2^{-1} = 2^{-1} = 2^{-1} = 2^{-1} = 2^{-1} = 2^{-1} = 2^{-1} = 2^{-1} = 2^{-1} = 2^{-1} = 2^{-1} = 2^{-1} = 2^{-1} = 2^{-1} = 2^{-1} = 2^{-1} = 2^{-1} = 2^{-1} = 2^{-1} = 2^{-1} = 2^{-1} = 2^{-1} = 2^{-1} = 2^{-1} = 2^{-1} = 2^{-1} = 2^{-1} = 2^{-1} = 2^{-1} = 2^{-1} = 2^{-1} = 2^{-1} = 2^{-1} = 2^{-1} = 2^{-1} = 2^{-1} = 2^{-1} = 2^{-1} = 2^{-1} = 2^{-1} = 2^{-1} = 2^{-1} = 2^{-1} = 2^{-1} = 2^{-1} = 2^{-1} = 2^{-1} = 2^{-1} = 2^{-1} = 2^{-1} = 2^{-1} = 2^{-1} = 2^{-1} = 2^{-1} = 2^{-1} = 2^{-1} = 2^{-1} = 2^{-1} = 2^{-1} = 2^{-1} = 2^{-1} = 2^{-1} = 2^{-1} = 2^{-1} = 2^{-1} = 2^{-1} = 2^{-1} = 2^{-1} = 2^{-1} = 2^{-1} = 2^{-1} = 2^{-1} = 2^{-1} = 2^{-1} = 2^{-1} = 2^{-1} = 2^{-1} = 2^{-1} = 2^{-1} = 2^{-1} = 2^{-1} = 2^{-1} = 2^{-1} = 2^{-1} = 2^{-1} = 2^{-1} = 2^{-1} = 2^{-1} = 2^{-1} = 2^{-1} = 2^{-1} = 2^{-1} = 2^{-1} = 2^{-1} = 2^{-1} = 2^{-1} = 2^{-1} = 2^{-1} = 2^{-1} = 2^{-1} = 2^{-1} = 2^{-1} = 2^{-1} = 2^{-1} = 2^{-1} = 2^{-1} = 2^{-1} = 2^{-1} = 2^{-1} = 2^{-1} = 2^{-1} = 2^{-1} = 2^{-1} = 2^{-1} = 2^{-1} = 2^{-1} = 2$ | A1                  | For correct $\cosh 2x$ (ignore others)                                                                                      |
|       | $=\pm\frac{1}{2}\ln\left(\frac{3}{2}+\frac{1}{2}\sqrt{5}\right)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Al√                 | For correct answers (and no more)                                                                                           |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     | f.t. from value(s) for $\cosh 2x$                                                                                           |
|       | METHOD 3 Put all into exponentials                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | M1                  | For changing to $e^{\pm kx}$                                                                                                |
|       | $\Rightarrow e^{4x} - 3e^{2x} + 2 - 3e^{-2x} + e^{-4x} = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | A1                  | For correct equation                                                                                                        |
|       | $\Rightarrow \left(e^{4x}+1\right)\left(e^{4x}-3e^{2x}+1\right)=0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | M1                  | For solving for $e^{2x}$                                                                                                    |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | A1                  | For correct $e^{2x}$ (ignore others)                                                                                        |
|       | $\Rightarrow e^{2x} = \frac{1}{2} \left( 3 \pm \sqrt{5} \right) \Rightarrow x = \frac{1}{2} \ln \left( \frac{3}{2} \pm \frac{1}{2} \sqrt{5} \right)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | A1√                 | For correct answers (and no more)                                                                                           |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     | f.t. from value(s) for $e^{2x}$                                                                                             |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 9                   |                                                                                                                             |
|       | $r_{1}^{3}-5r_{1}+3$ $2r_{1}^{3}-3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | M1                  | For attempt at N-R formula                                                                                                  |
| 5 (i) | $x_{n+1} = x_n - \frac{x_n - 5x_n + 5}{2x_n - 5} = \frac{2x_n - 5}{2x_n - 5}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | A1                  | For correct N-R expression                                                                                                  |
|       | $3x_n^ 5 \qquad 3x_n^ 5$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | A1                  | 3 For correct answer (necessary details                                                                                     |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     | needed) AG<br>Allow omission of suffixes                                                                                    |
| (ii)  | F'(r) =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | M1                  | For using quotient <i>OR</i> product rule                                                                                   |
|       | (2) = (2) = (2) + (2) = (2) + (2) = (2) + (2) = (2) + (2) = (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2)    |                     | to find $F'(x)$                                                                                                             |
|       | $\frac{6x^{-}(3x^{-}-5)-6x(2x^{-}-3)}{6x^{-}(2x^{-}-3)} = \frac{6x(x^{-}-5x+3)}{6x^{-}(2x^{-}-3)}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | M1                  | For factorising numerator to show                                                                                           |
|       | $(3x^2-5)^2$ (3x <sup>2</sup> -5) <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                     | $k(x^3-5x+3)$                                                                                                               |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |                                                                                                                             |
|       | $6\alpha(\alpha^3-5\alpha+3) \qquad \qquad$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | A 1                 | <b>3</b> For correct explanation of <b>AG</b>                                                                               |
|       | $r(\alpha) = \frac{1}{(3\alpha^2 - 5)^2} = 0$ since $\alpha^2 - 5\alpha + 3 = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                     |                                                                                                                             |
| (iii) | $x_1 = 2 \implies 1.85714, \ 1.83479, \ 1.83424, \ 1.83424$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <br>B1              | First iterate correct to at least 4 d n $OR \frac{13}{13}$                                                                  |
|       | $(\alpha =) 1.8342$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | B1                  | For 2 equal iterates to at least 4 d $\mathbf{n}$                                                                           |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | B1                  | <b>3</b> For correct α to 4 d.p.                                                                                            |
|       | SR For starting value leading to another                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                     | Allow answer rounding to 1.8342                                                                                             |
|       | root allow up to B1 B1 B0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                     | <b>SR</b> If not N-R, B0 B0 B0                                                                                              |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 9                   |                                                                                                                             |

| 6 (i)           | $y = x^{x} \Rightarrow \ln y = x \ln x \Rightarrow \frac{1}{y} \frac{dy}{dx} = 1 + \ln x$                                                                           | M1 For differentiating $\ln y OR x \ln x$ w.r.t. x                                                                                                                                                                                                                                                             |
|-----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                 | $dy = x^{x}(1 + \ln x) = 0 \implies \ln x = 1 \implies x = e^{-1}$                                                                                                  | A1 For $(1 + \ln x)$ seen or implied                                                                                                                                                                                                                                                                           |
|                 | $\frac{dx}{dx} = x  (1 + \ln x) = 0 \implies \ln x = -1 \implies x = e$                                                                                             | A1 3 For correct x-value from fully correct working $\mathbf{AG}$                                                                                                                                                                                                                                              |
| (ii             | i) $A > 0.2 \times 0.5^{0.5} + 0.2 \times 0.7^{0.7} + 0.1 \times 0.9^{0.9}$                                                                                         | M1 For areas of 3 lower rectangles                                                                                                                                                                                                                                                                             |
|                 | $\Rightarrow A > 0.3881(858) > 0.388$                                                                                                                               | A1 2 For lower bound rounding to AG                                                                                                                                                                                                                                                                            |
| (ii             | ii) $A < 0.2 \times 0.7^{0.7} + 0.2 \times 0.9^{0.9} + 0.1 \times 1^1$<br>$\Rightarrow A < 0.4377(177) < 0.438$                                                     | M1For areas of 3 upper rectanglesA12For upper bound rounding to 0.438                                                                                                                                                                                                                                          |
| (i <sup>1</sup> | x                                                                                                                                                                   | <ul> <li>M1 Consider rectangle of height f(e<sup>-1</sup>)</li> <li>A1 Use at least 1 lower rectangle,<br/>height f(e<sup>-1</sup>)</li> <li>B1 3 Use at least 1 upper rectangle,<br/>height f(0)</li> <li>SR If more than one rectangle is used for<br/>either bound, they must be shown correctly</li> </ul> |
| 7 (i)           | i) $\cos 3\theta = \cos(-3\theta) \ OR \ \cos \theta = \cos(-\theta)$ for all $\theta$                                                                              | $\theta$ M1 For a correct procedure for symmetry related to the equation <i>OR</i> to $\cos 3\theta$                                                                                                                                                                                                           |
|                 | $\Rightarrow$ equation is unchanged, so symmetrical about $\theta = 0$                                                                                              | A1 2 For correct explanation relating to equation AG                                                                                                                                                                                                                                                           |
| (ii             | i) $r = 0 \Rightarrow \cos 3\theta = -1$                                                                                                                            | M1 For obtaining equation for tangents                                                                                                                                                                                                                                                                         |
|                 | $\Rightarrow \theta = \pm \frac{1}{3}\pi, \pi$                                                                                                                      | A1 3 A1 for all, no extras (ignore outside range)                                                                                                                                                                                                                                                              |
| (ii             | ii) $\int_{-\frac{1}{3}\pi}^{\frac{1}{3}\pi} \frac{1}{2} (1 + \cos 3\theta)^2 (d\theta)$                                                                            | B1 For correct integral with limits soi<br>(limits may be $\left[0, \frac{1}{3}\pi\right]$ at any stage)                                                                                                                                                                                                       |
|                 | $= \frac{1}{2} \int_{-\frac{1}{3}\pi}^{\frac{1}{3}\pi} 1 + 2\cos 3\theta + \cos^2 3\theta  \mathrm{d}\theta$                                                        | M1* For multiplying out, giving at least 2 terms                                                                                                                                                                                                                                                               |
|                 | $= \frac{1}{2} \int_{-\frac{1}{3}\pi}^{\frac{1}{3}\pi} 1 + 2\cos 3\theta + \frac{1}{2} (1 + \cos 6\theta) \mathrm{d}\theta$                                         | M1<br>For integration to<br>$A\theta + B\sin 3\theta + C\sin 6\theta$ AEF<br>For completing integration and substituting                                                                                                                                                                                       |
|                 | $= \frac{1}{2} \left[ \theta + \frac{2}{3} \sin 3\theta + \left( \frac{1}{2} \theta + \frac{1}{12} \sin 6\theta \right) \right]_{-\frac{1}{3}\pi}^{\frac{1}{3}\pi}$ | (*dep) their limits into terms in $\frac{\cos}{\sin}n\theta$                                                                                                                                                                                                                                                   |
|                 | $=\frac{1}{2}\pi$                                                                                                                                                   | A1 5 For correct area www                                                                                                                                                                                                                                                                                      |
|                 | -                                                                                                                                                                   | 10                                                                                                                                                                                                                                                                                                             |

| 8 | (i)   | METHOD 1                                                                                                          | M1                       | For appropriate use of $\sinh^2 \theta - \cosh^2 \theta$ .           |
|---|-------|-------------------------------------------------------------------------------------------------------------------|--------------------------|----------------------------------------------------------------------|
|   |       | $\sinh(\cosh^{-1}2) =$                                                                                            | 1111                     | For appropriate use of sinh $\theta = \cos \theta - 1$               |
|   |       | $\sinh\beta = \sqrt{\cosh^2\beta - 1} = \sqrt{2^2 - 1} = \sqrt{3}$                                                | A1 2                     | For correct verification to AG                                       |
|   |       | METHOD 2                                                                                                          | M1                       | For attempted use of ln forms of $\sinh^{-1} x$                      |
|   |       | $\sinh^{-1}\sqrt{3} = \ln(\sqrt{3}+2), \ \cosh^{-1}2 = \ln(2+\sqrt{3})$                                           |                          | and $\cosh^{-1} x$                                                   |
|   |       | $\Rightarrow \sinh(\cosh^{-1}2) = \sqrt{3}$                                                                       | A1                       | For both ln expressions seen                                         |
|   |       | METHOD 3                                                                                                          |                          | 1                                                                    |
|   |       | $\cosh^{-1} 2 = \ln\left(2 + \sqrt{3}\right)$                                                                     | M1                       | For use of ln form of $\cosh^{-1} x$ and                             |
|   |       | $\sinh(\cosh^{-1}2) = \frac{1}{2} \left( e^{\ln(2+\sqrt{3})} - e^{-\ln(2+\sqrt{3})} \right)$                      | A1                       | For correct verification to <b>AG</b>                                |
|   |       | $\begin{pmatrix} & \end{pmatrix}^{2}$                                                                             |                          | SR Other similar methods may be used                                 |
|   |       | $=\frac{1}{2}\left(2+\sqrt{3}-\left(2-\sqrt{3}\right)\right)=\sqrt{3}$                                            |                          | Note that $\ln\left(2+\sqrt{3}\right) = -\ln\left(2-\sqrt{3}\right)$ |
|   | (ii)  | $I_n = \int^\beta \cosh^n x  \mathrm{d}x$                                                                         | M1*                      | For attempt to integrate $\cosh x \cdot \cosh^{n-1} x$               |
|   |       | $\int J_0 = \int J^\beta (\beta) = 0$                                                                             |                          | by parts<br>For correct first stage of integration (ignore           |
|   |       | $= \left\lfloor \sinh x \cdot \cosh^{n-1} x \right\rfloor_0^r - \int_0^r \sinh^2 x \cdot (n-1) \cosh^{n-2} x  dx$ | dx Al                    | limits)                                                              |
|   |       | $=\sinh\beta\cdot\cosh^{n-1}\beta-(n-1)\int_0^\beta(\cosh^2 x-1)\cosh^{n-2}x$                                     | $x dx \frac{M1}{(*dep)}$ | For using $\sinh^2 x = \cosh^2 x - 1$                                |
|   |       | $2^{n-1}\sqrt{2}$ (n 1)(1 1 )                                                                                     | A1                       | For $(n-1)(I_n - I_{n-2})$ correct                                   |
|   |       | $= 2  \sqrt{3} - (n-1)(1_n - 1_{n-2})$                                                                            | B1                       | For $2^{n-1}\sqrt{3}$ correct at any stage                           |
|   |       | $\Rightarrow n I_n = 2^{n-1} \sqrt{3} + (n-1) I_{n-2}$                                                            | A1 6                     | For correct result AG                                                |
|   | (iii) | $I_1 = \int_0^\beta \cosh x  \mathrm{d}x = \sinh \beta = \sqrt{3}$                                                | B1                       | For correct value                                                    |
|   |       | $I_2 = \frac{1}{2} \left( 2^2 \sqrt{3} + 2\sqrt{3} \right) = 2\sqrt{3}$                                           | M1                       | For using (ii) with $n = 3 OR$ $n = 5$                               |
|   |       | 3 3( ( ) )                                                                                                        | A1                       | For $I_3 = \frac{1}{3} \left( 2^2 \sqrt{3} + 2I_1 \right)$           |
|   |       |                                                                                                                   |                          | $OR \ I_5 = \frac{1}{5} \left( 2^4 \sqrt{3} + 4I_3 \right)$          |
|   |       | $I_5 = \frac{1}{5} \left( 2^4 \sqrt{3} + 8\sqrt{3} \right) = \frac{24}{5} \sqrt{3}$                               | A1 4                     | For correct value                                                    |
|   |       |                                                                                                                   | 12                       |                                                                      |